Effects of Feed Composition and Feed Impurities in the Catalytic Conversion of Syngas to Higher Alcohols over Alkali-Promoted Cobalt–Molybdenum Sulfide

نویسندگان

  • Jakob M. Christensen
  • Peter A. Jensen
  • Anker D. Jensen
چکیده

Alkali-promoted cobalt molybdenum sulfide is a potential catalyst for the conversion of syngas into higher alcohols. This work is an investigation of how the feed composition influences the behavior of the sulfide catalyst. In a sulfur-free syngas the production of higher alcohols is observed to be optimal with an equimolar mixture of CO and H2 in the feed, while the methanol production benefits from an increasing hydrogen content in the feed. The influence of NH3 andH2O in the syngas feed has also been investigated. Ammonia (741 ppmv) in the feed is observed to cause a general and largely reversible deactivation of the catalyst. Operation with elevated water levels in the syngas feed (4.7 13.4 mol %) is observed to cause a deactivation of the catalyst, and it is especially the chain growth that is affected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-dependent Kinetics Determination of MoS2-K2O/CNTS Nanocatalyst in the Synthesis of Alcohols from Syngas

The influence of Mo particle size on the catalytic activity and product selectivity of alkalized MoS2 nanocatalysts has been investigated. Nanocatalysts are prepared using a microemulsion technique with water-to-surfactant ratios of 1-12. Three different techniques, including XRD, TEM, and hydrogen chemisorption were used to determine the molybdenum average particle size and their activity and ...

متن کامل

Cobalt Loading Effects on the Physico-Chemical Properties and Performance of Co Promoted Alkalized MoS2/CNTs Catalysts for Higher Alcohols Synthesis

An extensive study of Higher Alcohol Synthesis (HAS) from synthesis gas using cobalt (Co) promoted alkalized MoS2 catalysts supported on Carbon NanoTubes (CNTs) is reported. Up to  5wt.% of Co is added to the 15wt.% Mo-wt.%K/ CNTs by incipient wetness impregnation method. Most of the metal particles were homogeneously distributed inside the tubes and the rest on the oute...

متن کامل

Molybdenum Loading Effects on the Physico-Chemical Properties and Performance of Carbon Nanotubes Supported Alkalized MoS2 Catalysts for Higher Alcohols Synthesis

An extensive study of Higher Alcohols Synthesis (HAS) from syngas using alkalized MoS2 catalysts supported on Carbon Nanotubes (CNTs) is reported. Up to 30wt.% of Mo and 8wt.% K are added to the CNTs by impregnation method. The catalysts were characterized by different methods and the performance of the catalysts was assessed in a micro-reactor. TEM images showed that mo...

متن کامل

KCl Promoted Cobalt-iron Nanocatalysts Supported on Silica: Catalytic Performance and Characterization in Fischer-Tropsch Synthesis

The SiO2 supported cobalt-iron nano catalysts were prepared by the sol-gel method. This research investigated the effects of (Co/Fe) wt.%, different Co/Fe ratio at different temperature and loading of KCl wt.% for Fisher-Tropsch synthesis (FTS). The results were showed that the catalyst containing 50 wt.% (Co/Fe)/SiO2 (Co/Fe ratio is 70/30) which promoted with 0.6 wt.% KCl is an optimal nano ca...

متن کامل

Oxidative Coupling of Methane to Ethylene Over Sodium Promoted Manganese Oxide

Manganese oxide catalyst promoted with sodium and supported on silica exhibits fairly good activity and selectivity towards the synthesis of ethylene from methane at the optimum operating conditions. Methane and oxygen were fed into a tubular fixed bed reactor packed with catalyst under atmospheric pressure. The effects of temperature, residence time and feed composition on conversion, selectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017